3. Parametric Competing Risks and Multi-state models

Detailed course description (PDF)


Prof. Paul Lambert
University of Leicester and Karolinska Institutet

Dr Michael Crowther
Biostatistics Research Group, Department of Health Sciences, University of Leicester, UK


This course will focus on the use of parametric survival models when analysing data with competing risks and then extending to multi-state models. Multi-state models are increasingly being used to model complex disease profiles. By modelling transitions between disease states, accounting for competing events at each transition, we can gain an improved understanding of patients prognosis and how risk factors impact over the whole disease pathway. We will place emphasis on the use of flexible parametric survival models that incorporate restricted cubic splines on the log hazard or log cumulative hazard scale. This will include models with time-dependent effects (non-proportional hazards). We will use an efficient and generalizable simulation method to obtain clinically useful and directly interpretable predictions, which are particularly useful for more complex models. We will also discuss assumptions of the models, including the Markov assumption and how this can be relaxed. The course will be taught using Stata making use of the multistate package.

The course will discuss the theory but emphasis will be placed on applying and interpreting the methods.

Course participants should be familiar with standard survival models, such as the Cox model and/or parametric survival models (e.g. Weibull).

Course Objectives

By the end of this short course participants will have

  • An understanding of how to fit and interpret flexible parametric survival models, including Royston-Parmar models.
  • An understanding of fitting and interpreting time-dependent effects.
  • An understanding of competing risks models and how to estimate cumulative incidence functions using parametric models.
  • An understanding of how to construct, analyse and interpret a multi-state model.
  • An understanding of the variety of useful measures that can be obtained from multistate models.
  • Practical experience of fitting the models using Stata®.

Course fees

Academic fee: CHF 900
Industry fee: CHF 2’000
SSPH+ fee: only applicable for students of the SSPH+ PhD Program in Public Health